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Abstract

Background—Influenza vaccines are now widely used to reduce the burden of annual epidemics 

of influenza virus infections. Influenza vaccine effectiveness (VE) is monitored annually to 

determine VE against each season’s circulating influenza strains in different groups such as 

children, adults and the elderly. Few prospective surveillance programs are available to evaluate 

influenza VE against medically-attended illness for patients of all ages in the United States.

Methods—We conducted surveillance of patients with acute respiratory illnesses in 101 clinics 

across the US during three consecutive influenza seasons. We analyzed laboratory testing results 

for influenza virus, self-reported vaccine history, and patient characteristics, defining cases as 

patients who tested positive for influenza virus and controls as patients who tested negative for 

influenza virus. Comparison of influenza vaccination coverage among cases versus controls, 

adjusted for potential confounders, was used to estimate VE as one minus the adjusted odds ratio 

multiplied by 100%.

Results—We included 10650 patients during three influenza seasons from August 2010 through 

December 2013, and estimated influenza VE in children 6m–5y of age (58%; 95% CI: 49%–66%), 

children 6–17y (45%; 95% CI: 34%–53%), adults 18–49y (36%; 95% CI: 24%, 46%), and adults 

≥50y (34%, 95% CI: 13%, 51%). VE was higher against influenza A(H1N1) compared to 

A(H3N2) and B.

Conclusions—Our estimates of moderate influenza VE confirm the important role of 

vaccination in protecting against medically attended influenza virus infection.
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INTRODUCTION

Influenza vaccines are now widely used to reduce the burden of annual epidemics of 

influenza virus infections. In the United States, universal vaccination recommendations were 

established for all persons aged ≥6 months in 2010 [1]. Influenza vaccine effectiveness (VE) 

is monitored annually to determine VE against each season’s circulating influenza strains in 

different groups such as children, adults and the elderly. One approach for monitoring VE is 

a variant of the case-control study known as the test-negative design [2, 3]. In this design, 

patients with acute respiratory illness are identified in a clinical setting and tested for 

influenza virus. Test-positive patients are defined as cases, while test-negative patients are 

defined as controls. The VE is then estimated by comparing the vaccination coverage of 

cases and controls, adjusting for potential confounders. The test-negative design is growing 

in popularity because of the ease of data collection in clinics, and because the design 

explicitly accounts for health-care seeking behavior which can bias estimates of VE in more 

traditional case control studies with community controls. Simulation studies have 

demonstrated that the test-negative design can produce accurate estimates of VE in various 

circumstances [4]. The earliest test-negative studies were nested within existing routine 

surveillance systems in Canada [5], while some more recent studies in the US have been 

established for research purposes [6–8], and the study design is now being used in many 

countries [9–12].

As research studies in the US can be very costly, we evaluated the feasibility of calculating 

influenza VE using data collected through public health surveillance. In 2009 the US 

Centers for Disease Control and Prevention (CDC) established the Influenza Incidence 

Surveillance Project (IISP) as a sentinel surveillance network to determine the community 

burden of consultations for acute respiratory infections and influenza virus infections [13–
15]. By collecting data on influenza vaccination status, this study also permits estimation of 

VE using the test-negative approach. The objectives of the present study were to assess VE 

overall, by circulating influenza strains, and by age, for the influenza seasons in 2010–11, 

2011–12 and 2012–13.

METHODS

Subjects

This study involved patients attended by health care providers participating in surveillance to 

monitor acute respiratory infections (ARI) with laboratory confirmation of influenza 

infection [13–15]. Surveillance was conducted in 101 clinics under the supervision of 13 

public health jurisdictions for the following seasons: Florida, Iowa, Minnesota, North 

Dakota, Oregon, Wisconsin, New York City; New Jersey, Virginia, Los Angeles county, and 

Philadelphia from August 2010 to July 2013; Utah from October 2010 to July 2011; Texas 

from August 2011 through July 2013. Each site recruited clinics that, in combination, 
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represented patients of all ages. The IISP uses routinely collected specimens and public 

health surveillance data.

Patients were evaluated by clinical staff to identify ARI with an onset ≤7 days prior to 

consultation; ARI was defined as reporting at least 2 of the following symptoms: fever, 

cough, sore throat, rhinorrhea, and congestion. From the first 10 ARI patients presenting 

each week, a nasopharyngeal, oropharyngeal or nasal swab was collected and placed in viral 

transport media for influenza testing. Selection of patients for testing was not based on any 

provider decision. Demographic and clinical data were collected during the visit. Specimens 

were tested by the state or local public health laboratory for influenza virus types A and B 

with subtyping of influenza A (H1N1)pdm09 and A(H3N2) using the CDC Human 

Influenza Virus RT-PCR Diagnostic Panel.

Influenza vaccination status in IISP was considered to be self-reported, although each 

provider’s data collection methods varied, representing a combination of self-report only (53 

clinics), self-report with medical chart and registry verification (17 clinics), electronic 

medical record extraction only (29 clinics), and vaccine registry only (2 clinics). A patient 

was considered vaccinated if receipt occurred >14 days prior to illness onset. The vaccine 

strains for 2010–11, 2011–12 and 2012–13 are shown in Appendix Table 1 [16–18].

Ethical approval

The IISP uses routinely collected specimens and public health surveillance data, and was 

therefore determined by CDC not to be subject to institutional review board approval for 

human research protections.

Statistical analysis

Children aged <6 months were excluded from the present analysis since they are not 

recommended to receive influenza vaccine in the US. Patients without influenza laboratory 

testing results were also excluded from analysis. We used multiple imputation with 20 

imputed data sets to allow for missing data on age, sex and vaccination history [19]. 

Imputations were based on an additive regression model which included age group, sex, 

state, calendar week, vaccination history, and the laboratory result for influenza virus.

Influenza seasons were defined as the period of consecutive weeks with at least 10 

influenza-positive patients, and we restricted all of our analyses to influenza seasons. We 

used conditional logistic regression models to estimate VE, conditioning by week of clinic 

visit, to account for changes in vaccine coverage over calendar time. Regression models 

included age group, and sex to control for their independent effects on the probability of 

influenza infection in addition to their association with receipt of vaccination that would 

otherwise confound the association between vaccination and influenza. Influenza VE was 

calculated as one minus the conditional adjusted odds ratio of vaccination in test-positive 

versus test-negative patients. Additional analyses were performed for specific influenza 

types/subtypes (excluding specimens positive for influenza of other types/subtypes), and 

stratified by age and season. In a sensitivity analysis we estimated VE on the subset of the 

data with complete information on all covariates. To minimize misclassification bias, we 
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also estimated VE restricting analysis to patients who had onset 0–4 days prior to 

consultation.

RESULTS

From August 2010 through December 2013, 17652 patients were recruited, of whom 572 

(3.2%) patients were not tested for influenza virus. In addition, 397 (2.2%) patients were 

aged <6 months, and excluded. Of the remaining 16683 patients, 3893 (23.3%) tested 

positive for influenza A or B virus. The influenza season in 2010–11 was a mixed season 

with circulation of A(H1N1), A(H3N2) and B, while the season in 2011–12 was dominated 

by A(H3N2) and the season in 2012–13 was dominated by A(H3N2) and B (Figure 1). 

Vaccine strains (shown in Appendix Table 1) were generally well matched to the prevalent 

strains each season [16–18].

At least 10 test-positive patients per week were identified for 20, 17 and 23 consecutive 

weeks in 2010–11, 2011–12 and 2012–13 respectively (Figure 1). The 10650 patients 

included during the three influenza seasons ranged in age from 6 months to 99 years, with 

the majority made up of school-age children 6–17 years of age and adults aged 18–49 years, 

while slightly less than half were male (Table 1). All statistical analyses reported below were 

based on these 10650 patients. Influenza vaccination was reported for 30.4% of influenza 

test-negative patients, compared to 18.6% of test-positive patients. Patient characteristics 

stratified by influenza type/subtype are shown in Appendix Table 2. Of the 10650 patients, 

80.8% reported a febrile illness.

Estimated VE for all influenza was 47% (95% confidence interval, CI: 42%, 52%), ranging 

by season from 40% to 51%. We found that VE was comparatively higher against influenza 

A(H1N1) compared to influenza A(H3N2) and B. For any influenza virus, VE tended to 

decline as age increased, with point estimates ranging by age from 34% to 58% where 

confidence intervals do not include zero (Table 2). While the sample size was insufficient to 

condition by state and week of enrolment, very similar results were obtained when 

conditioning by state and month of enrolment (data not shown). Age and season-specific VE 

estimates by influenza type/subtype are shown in Figure 2. Point estimates of VE against all 

influenza fell in the range 32% to 63% each year, although robust estimation for adults aged 

≥50 years was not possible in 2010–11 due to low recruitment in this age group. It was not 

possible to estimate age-specific VE against influenza B in 2011–12 or against A(H1N1) in 

2012–13 due to low circulation during these years. Point estimates for VE in the complete 

case analysis were very consistent with the estimates in the main analysis that used multiple 

imputation to account for missing data (Table 2).

DISCUSSION

Across three winters, we estimated similar VE against medically-attended laboratory-

confirmed influenza in children and adults with point estimates ranging from 34% to 58% 

(Table 2). We found that VE was higher against influenza A(H1N1) compared to influenza 

A(H3N2) and B (Table 2), and tended to be higher in children than in adults. These 

estimates are in line with annual VE estimates from other countries around the world in 
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those years, where VE was generally moderate [9–11]. In particular, these estimates of VE 

are consistent with previous estimates from the US over the same time period [6–8] with a 

few exceptions of age and season-specific estimates. For example, in 2010–11, we estimated 

a low to moderate VE against influenza A(H3N2) in children aged 6 months to 5 years of 

age, while Treanor et al. estimated a moderate VE of 66% (95% CI: 48%–78%) in children 

aged 6 months–8 years [6]. Then, in 2011–12, we estimated low VE against influenza for all 

ages which is consistent with the estimates by Ohmit et al. of a low to moderate VE of 39% 

(95% CI: 23%–52%) against influenza A(H3N2) [7]. However, the estimated VE using 

comparable age groups in 2010–11 was still lower in the IISP cohort than in Treanor et al. 

[6], but confidence intervals overlapped, and VE in 2011–12 was very similar to that 

reported by Ohmit et al [7]. A direct head-to-head comparison of VE estimates from the 

IISP and the other studies is underway.

Annual influenza coverage for the United States was estimated to be 42–43% in the general 

population during the years covered by our study, and higher among children and the elderly 

[20]. Both the national estimates and IISP rely on self-reported vaccination, but vaccination 

coverage among IISP participants was lower. Among children aged 6 months to 17 years 

vaccine coverage ranged each season from 29% to 39%, and was substantially lower among 

adults aged 18 to 49 years (18% to 24%), but higher among patients ≥50 years (37% to 

48%). Because participation in this project was conditional on seeking medical care for ARI, 

potential reasons for the lower vaccination coverage in IISP include the overrepresentation 

of influenza test positive individuals, the large proportion of participants between the ages of 

18–49 years, and an unclear representation of insured persons.

The IISP has been shown to provide a successful alternate approach to conducting 

population-based surveillance that is enhanced by systematic molecular testing for 

respiratory viruses. This simple platform has been useful for estimating the burden of 

disease for influenza and other respiratory viruses [13–15], and has demonstrated further 

utility for the estimation of VE. One of the strengths of the present study is the large sample 

size, which permitted precise estimation of VE in most age groups for the predominant 

strains each season. Since this study was based in a sentinel surveillance system, it provides 

an efficient approach to routine annual estimation of VE. There are a few limitations worthy 

of mention. First, vaccination history was largely self-reported and not validated, and this 

could have led to misclassification bias, with consequent underestimation of VE if the bias 

was non-differential. We were unable to determine whether vaccinated children <9y of age 

were fully vaccinated, i.e. if children with no prior experience of influenza vaccine had 

received two doses of vaccination at least 21 days apart. Second, medical chart reviews were 

not conducted to ascertain underlying medical conditions due to resource intensiveness, 

which could be a confounder, also leading to the potential for bias in estimation of VE. 

Third, there were several secondary analyses that were not possible. Data were not collected 

on the type of vaccine received, prohibiting analyses of VE for specific types of vaccines, 

such as inactivated or live attenuated vaccines, and possible corresponding age differential 

VE. Finally, data were not collected on prior vaccination history and we were not able to 

examine the potential consequences of repeat vaccination on VE [12, 21–24].
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In conclusion, we have shown that estimation of VE using the test-negative design and a 

routine surveillance network data is feasible. The data demonstrated that in each of the three 

seasons studied, influenza vaccination afforded protection against medically-attended 

laboratory-confirmed influenza virus infection for the predominant circulating influenza 

strains. Given the national influenza vaccination coverage was 42%–43% in the study years 

and the incidence of medical visits associated with laboratory-confirmed influenza was 7.0, 

1.9 and 10.7 per 1000 persons in the three study seasons respectively [15], the moderate VE 

estimated here suggests that influenza vaccination had a substantial public health impact. 

Moderate VE emphasizes the importance of developing more immunogenic vaccines to 

provide higher protection in all ages, and the declining VE in older adults supports the 

particular importance of more immunogenic vaccines in this group. Influenza vaccination 

provides the best protection against influenza virus infection. The moderate effectiveness of 

influenza vaccination across the three seasons in our study indicates the need for 

complementary public health measures to further reduce the burden of influenza.
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Appendix

Appendix Table 1

Vaccine strain components in 2010–11, 2011–12 and 2012–13

Virus 2010–11 2011–12 2012–13

A(H1N1) A/California/7/2009-like (H1N1) A/California/7/2009-like (H1N1) A/California/7/2009-like (H1N1)

A(H3N2) A/Perth/16/2009-like (H3N2) A/Perth/16/2009-like (H3N2) A/Victoria/361/2011-like (H3N2)

B B/Brisbane/60/2008-like (B/Victoria lineage) B/Brisbane/60/2008-like (B/Victoria lineage) B/Wisconsin/1/2010-like (B/Yamagata lineage)

Appendix Table 2

Comparison of patients testing positive for influenza A(H1N1), A(H3N2) and B viruses 

compared to patients testing negative for all influenza viruses, for the 10,650 patients 

included during the three influenza seasons in our study period.a

Characteristic A(H1N1) (n=550)
N (%)

A(H3N2) (n=1890)
N (%)

B (n=1245)
N (%)

Negative (n=6907)
N (%)

Age group
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Characteristic A(H1N1) (n=550)
N (%)

A(H3N2) (n=1890)
N (%)

B (n=1245)
N (%)

Negative (n=6907)
N (%)

 6m–5yr 81 (14.7%) 349 (18.5%) 246 (19.8%) 2039 (29.5%)

 6–17yr 132 (24.0%) 578 (30.6%) 624 (50.1%) 1779 (25.8%)

 18–49yr 318 (57.8%) 711 (37.6%) 314 (25.2%) 2427 (35.1%)

 ≥50yr 19 (3.5%) 250 (13.2%) 60 (4.8%) 658 (9.5%)

 Unknown 0 (0) 2 (0.1%) 1 (0.1%) 4 (0.1%)

Sex

 Male 261 (47.5%) 877 (46.4%) 626 (50.3%) 3048 (44.1%)

 Female 287 (52.2%) 993 (52.5%) 609 (48.9%) 3800 (55.0%)

 Unknown 2 (0.4%) 20 (1.1%) 10 (0.8%) 59 (0.9%)

Seasonal influenza vaccination 
history

 Yes for that season (>2 weeks 
prior to onset)

52 (9.5%) 416 (22.0%) 215 (17.3%) 2097 (30.4%)

 No reported vaccination for that 
season (>2 weeks prior to onset)

318 (57.8%) 1155 (61.1%) 696 (55.9%) 3367 (48.7%)

 Reported as unknown 180 (32.7%) 319 (16.9%) 334 (26.8%) 1443 (20.9%)

Influenza season

 2010–11 415 (75.5%) 478 (25.3%) 511 (41.0%) 2784 (40.3%)

 2011–12 100 (18.2%) 293 (15.5%) 57 (4.6%) 1692 (24.5%)

 2012–13 35 (6.4%) 1119 (59.2%) 677 (54.4%) 2431 (35.2%)

a
Of the patients positive for A(H1N1), 2 were also positive for A(H3N2) and 2 were also positive for B, while 11 patients 

were positive for A(H3N2) and B. 73/10650 (0.7%) patients with unsubtypeable influenza A virus infections were excluded 
from this table.
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Figure 1. 
Surveillance of patients through three influenza seasons, and laboratory results for influenza 

virus. A small number (4/16683; 0.02%) of patients with co-infections with influenza 

A(H1N1) and A(H3N2) or B are plotted as A(H1N1), while 11/16683 (0.07%) patients with 

co-infections with influenza A(H3N2) and B are plotted as A(H3N2).
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Figure 2. 
Estimates of influenza vaccine effectiveness by type/subtype, age group and year. 95% 

confidence intervals wider than 100 percentage points are not shown. Robust estimation for 

adults aged >50 years was not possible in 2010–11 or for influenza A subtypes in 2011–12, 

and it was not possible to estimate age-specific VE against influenza B in 2011–12 or 

against A(H1N1) in 2012–13 due to small numbers of patients and low circulation of the 

specific subtypes in these seasons
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Table 1

Comparison of the characteristics of patients testing positive for any influenza virus versus the patients testing 

negative for influenza virus, for the 10,650 patients included during the three influenza seasons in our study 

period.

Characteristic Test-positive (n=3743)
N (%)

Test-negative (n=6907)
N (%)

Age groupa

 6m–5y 685 (18.3%) 2039 (29.5%)

 6–17y 1345 (35.9%) 1779 (25.8%)

 18–49y 1372 (36.7%) 2427 (35.1%)

 ≥50y 338 (9.0%) 658 (9.5%)

 Unknown 3 (0.1%) 4 (0.1%)

Sexa

 Male 1797 (48.0%) 3048 (44.1%)

 Female 1914 (51.1%) 3800 (55.0%)

 Unknown 32 (0.9%) 59 (0.9%)

Influenza vaccination historya

 Yes for that season (>2 weeks prior to illness onset) 696 (18.6%) 2097 (30.4%)

 No reported vaccination for that season (>2 weeks prior to illness onset) 2204 (58.9%) 3367 (48.7%)

 Reported as unknown 843 (22.5%) 1443 (20.9%)

Influenza season

 2010–11 1424 (38.0%) 2784 (40.3%)

 2011–12 472 (12.6%) 1692 (24.5%)

 2012–13 1847 (49.3%) 2431 (35.2%)
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